Colocally connected, Non-cut, Nonblock and Shore sets in Hyperspaces and Symmetric Products

Verónica Martínez de la Vega Jorge M Martínez Montejano

XV Workshope on Continuum Theory and Dynamics Systems North Bay, ON 2018

Colocally connected, Non-cut, Nonblock and shore sets in Hyperspaces and Symmetric Products

- 1. Definitons
- 2. Previous Results
- 3 Main Result in the Hyperspace Cn(X)
- 4. Main Results in Symmetric Products.
- 5. Special Cases in Symmetric Products.
- 6. Counter examples in Symmetric Products.

1. Definitions

Definitions

• A *CONTINUUM* is a compact connected metric space.

Defintinions-Examples

Sen(1/x)-continuum

1.1. Hypersapaces

HYPERSPACES

 Given a continuum X, we define the following hyperspaces:

• $2^X = \{ A \subset X : A \neq \emptyset \text{ and } A \text{ is closed } \}$

The Hyperspaces C(X) and Cn(X)

• $C(X) = \{ A \in 2^X : A \text{ is connected } \}$

C_n(X) = { A ∈ 2^X : A has at most n components }

The Symmetric product $F_n(X)$

• $F_n(X) = \{ A \in 2^X : A \text{ has at most n points } \}$

THE HAUSDORFF METRIC IN 2^X

- We endow 2^X with the Hausdorff metric H.
- Since $F_n(X)$, C(X) and $C_n(X)$ are subspaces of 2^X , we endow them with the Hausdorff metric H, as well.

1.3 Colocal connectedness

Colocal connectedness

- Let X be a continuum and A a subcontinuum of X with int(A) = ∅.
- We say that A is a continuum of colocal connectedness in X provided that for each open subset U of X with A ⊂ U there exists an open subset V of X such that A ⊂ V ⊂ U and X \ V is connected.

1.4 Not a weak cut continuum

Not a weak cut

 Let X be a continuum and A a subcontinuum of X with int(A) = ∅.

We say that A is **not a weak cut** continuum in X if for any pair of points $x,y \in X / A$ there is a subcontinuum M of X such that

 $x, y \subseteq M \text{ and } M \cap A = \emptyset.$

1.5 Non Block

Non Block

 Let X be a continuum and A a subcontinuum of X with int(A) = ∅.

We say that A is **a nonblock** continuum in X provided that there exist a sequence of subcontinua M1,M2,...

such that M1 \subseteq M2 $\subseteq \cdots$ and \bigcup Mn is dense subset of X \setminus A.

1.6 Shore, Not strong Center and Non Cut

Shore, Not strong Center and Non Cut

 Let X be a continuum and A a subcontinuum of X with int(A) = ∅.
 We say that A is:

a shore continuum in X if for each $\varepsilon > 0$ there is a subcontinuum M of X such that $H(M, X) < \varepsilon$ and $M \cap A = \emptyset$.

Shore, Not strong Center and Non Cut

- (5) not a strong center in X provided that for each pair of nonempty open subsets U and V of X there exists a subcontinuum M of X such that M∩U ≠ Ø ≠ M∩V and M∩A = Ø.
- (6) a noncut continuum in X if X \ A is connected.

2. Previous Results

Theorem

J. Bobok, P. Pyrih and B. Vejnar

- Colocally Connected => non- weak cut => non-block => shore => strong center => non cut
- Non cut ≠>strong center ≠>shore≠>non block
 ≠> non weak cut ≠> colocally connected
- If X is locally connected then Colocally
 Connected <=> non- weak cut <=> non-block
 <=> shore< => strong center< => non cut

$F_1(X)$ is a sumbcontinuum in $\mathcal{H}(X)$

• Where $\mathcal{H}(X)$ is any Hyperspace, $\mathcal{H}(X) \in \{2^X, F_n(X), C(X), C_n(X)\}$

In fact $F_1(X)$ has empty interior in $\mathcal{H}(X)$

 $F_1(X)$ is homeomorphic to X.

So we want to know if $F_1(X)$ is a :

- Collocal connected
- Non weak cut
- Non block
- Shore
- Strong center
- Non cut

subcontinum in $\mathcal{H}(X)$.

3 Main Result in the Hyperspace Cn(X)

Theorem (VMV and JMM, 2017)

• For every continuum X and each positive integer n, $F_1(X)$ is a colocally connected subcontinuum in $C_n(X)$

ORDERED ARCS IN HYPERSPACES

- Given the Hyperspace $C_n(X)$ if A,B \in $C_n(X)$ and A \subseteq B we define an ordered arc from A to B in $C_n(X)$ is a map $\alpha:[0,1] \rightarrow C_n(X)$ such that:
- $\alpha(0) = A, \alpha(1) = B$ and
- if $0 \le s < t \le 1$ then $\alpha(s) \subseteq \alpha(t)$

• For every continuum X and each positive integer n, $F_1(X)$ is a colocally connected subcontinuum in 2^X

4 Main Results in Symmetric Products.

 For every continuum X and each positive integer n ≥ 3, F₁(X) is a colocally connected set in F_n(X)

 For every locally connected continuum X and each integer n, n = 2, F₁(X) is a colocally connected set in F_n(X)

• Let X be a continuum and n = 2. Then $F_1(X)$ is a nonblock continuum in $F_n(X)$.

 The Knaster continuum K satisfies that F₁(K) is not colocally connected in F₂(X)

• Let X be the sin 1/x continuum, then $F_1(X)$ is a weak cut continuum in $F_2(X)$.

Sen(1/x)-continuum

Theorem (2018 VMV & JMMM)

Let X be a nonlocally connected chainable continuum. Suppose that there is a monotone map $\pi: X \rightarrow [0,1]$ such that for each

a,b $\in \pi^{-1}([a,b])$ with a < b. Then $F_1(X)$ is a weak cut continuum in $F_2(X)$.

Theorem (VMV and JMM, 2017)

 For each arcwise connected continuum X and for n = 2, F₁(X) is a non-cut set in F_n(X)

Theorem (VMV and JMM, 2017)

There exists a dendroid X such that
 F₁(X) is not a colocally connected set
 in F₂(X).

Colocally connected, Non-cut, Nonblock and shore sets in Hyperspaces and Symmetric Products

- 1. For every continuum X and each integer n, n ≥ 2, F₁(X) is a colocal connected set in C_n(X)
- 2. For every locally connected continuum X and each positive integer n, F₁(X) is a colocal connected set in F_n(X)

Colocally connected, Non-cut, Nonblock and shore sets in Hyperspaces and Symmetric Products

- 3. For each continuum X and positive integer n, $F_1(X)$ is a non-block continuum in $F_n(X)$
- 4. The Knaster continuum K satisfies that $F_1(K)$ is not colocally connected in $F_2(X)$

Colocally connected, Non-cut, Nonblock and shore sets in Hyperspaces and Symmetric Products

• 5. The sin(1/x) curve S satisfies that $F_1(s)$ is a weak cut continuum in $F_2(X)$

Colocally connected, Non-cut, Non-block and shore sets in Hyperspaces and Symmetric Products

- 8. For each arcwise connected continuum X, F₁(X) is a non-cut set in Fn(X)
- 9. There exists a dendroid X such that $F_1(X)$ is not a colocally connected set in $F_2(X)$.

#